Last edited by Voodoolkree

Thursday, May 21, 2020 | History

3 edition of **Well-posedness of one-way wave equations and absorbing boundary conditions** found in the catalog.

Well-posedness of one-way wave equations and absorbing boundary conditions

Lloyd N. Trefethen

- 0 Want to read
- 30 Currently reading

Published
**1985**
by Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, For sale by the National Technical Information Service in Hampton, Va, [Springfield, Va
.

Written in English

- Wave equation.

**Edition Notes**

Other titles | Well posedness of one way wave equations and absorbing boundary conditions. |

Statement | Lloyd N. Trefethen, Laurence Halpern. |

Series | ICASE report -- no. 85-30., NASA contractor report -- 172619., NASA contractor report -- NASA CR-172619. |

Contributions | Halpern, Laurence., Institute for Computer Applications in Science and Engineering. |

The Physical Object | |
---|---|

Format | Microform |

Pagination | 1 v. |

ID Numbers | |

Open Library | OL15276895M |

Key words. Helmholtz equation, waveguide, nonlocal boundary conditions, a priori estimates. AMS subject classi cations. 35J05, 35J20, 65N30, 76Q05 1. Introduction. In this paper we develop and analyze a model for wave propagation based on the Helmholtz equation in the context of a realistic environment widely used in applicationsFile Size: KB. domain. One way out of this problem is to truncate the large domain and to equip () or() with so-calledabsorbing boundary conditions. Recently, Kaltenbacher & Shevchenko [14, 24] derived and proposed absorbing boundary conditions of order zero and order one for the Westervelt equation () in one and two space : Gieri Simonett, Mathias Wilke.

Radiation boundary conditions for the numerical simulation of waves - Volume 8 - Thomas Hagstrom Petropoulos, P. (), ‘ Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell's equations in rectangular, (), ‘ Well-posedness of one-way wave equations and absorbing boundary Cited by: We reconsider the stability theory of boundary conditions for the wave equation from the point of view of energy techniques. We study, for the case of the homogeneous half-space, a large class of boundary conditions including the so-called absorbing conditions. We show that the results of strong stability in the sense of Kreiss, studied from the point of view of the modal analysis by Trefethen.

This book presents the key ideas along with many figures, examples, and short, elegant MATLAB programs for readers to adapt to their own needs. Well-posedness of one-way wave equations and absorbing boundary conditions by Lloyd N Trefethen Defines the fundamental boundary conditions governing the effects of these forces. Includes. The Equation of Motion and Boundary Conditions The wave equation is a second-order linear partial differential equation u tt = c2∆u+f (1) with u tt = ∂2u ∂t 2, ∆ = ∇∇ = ∂ 2 ∂x + ∂ ∂y + ∂ ∂z2, (2) whese u is the pressure ﬁeld (as described above) and c is the speed of sound, which we assume to be constant in the File Size: KB.

You might also like

Three treatises on man

Three treatises on man

Light up your blues

Light up your blues

Kansas woodlands

Kansas woodlands

making of English

making of English

Mrs. Sarah Townsend.

Mrs. Sarah Townsend.

Yahvism

Yahvism

Bareboating

Bareboating

Toward a general standard of waiver in the criminal process

Toward a general standard of waiver in the criminal process

Flore House Gardens.

Flore House Gardens.

Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions By Lloyd N. Trefethen* and Laurence l (aipern Abstract. A one-way wave equation is a partial differential equation which, in some approxi-mate sense, behaves like the wave equation in one direction but permits no propagation in the opposite one.

Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions By Lloyd N. Trefethen* and Laurence Halpern Abstract.

A one-way wave equation is a partial differential equation whlch, in some approxi- mate sense, behaves like the wave equation in one direction but permits no propagation in the opposite one.

Well-posedness of one-way wave equations and absorbing boundary conditions Author: Lloyd N Trefethen ; Laurence Halpern ; Institute for Computer Applications in Science and Engineering. Those rational functions r for which the corresponding one-way wave equation is well-posed are characterized both as a partial differential equation and as an absorbing boundary condition for the wave equation.

We find that if r(s) interpolates the square root of (1-s sup 2) at sufficiently many points in (-1,1), then well-posedness is assured. The one-way wave equations occurring in geophysics, underwater acoustics, and numerical studies involving absorbing boundary conditions are characterized analytically.

The conditions under which such equations are well posed are obtained by examining the rational functions used to reduce : Lloyd N. Trefethen and Laurence Halpern. Halpern L., Rahmouni A. () One-way operators, absorbing boundary conditions and domain decomposition for wave propagation. In: Bourlioux A., Gander M.J., Sabidussi G.

(eds) Modern Methods in Scientific Computing and Applications. NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol Springer, DordrechtCited by: 2. in issue. Absorbing Boundary Conditions for the Elastic Wave Equations James Sochacki Department of Mathematics University of California, Davis Davis, California ABSTRACT The two dimensional elastic wave equations are used to model wave propagation in mediums with large or unbounded domains.

In order to numerically simulate those problems the equations have to be put Cited by: In this work, new absorbing boundary conditions (ABCs) for a wave equation with a temperature-dependent speed of sound are proposed.

Based on the theory of pseudo-differential calculus, first- and second-order ABCs for the one- and two-dimensional wave equations are derived. Both boundary conditions are local in space and by: 1. Keywords: absorbing boundary conditions, one-way wave equations, well-posedness, stability, dis-crete approximations.

Absorbing Boundary Conditions are boundary procedures that are applied at the arti cial numerical boundaries of a computational domain to miminize or eliminate the spurious relections at these boundaries which occur in theFile Size: 42KB.

ity of solutions is established in Section and thereby completing the proof of well-posedness of Cauchy problem. In Sectioninitial boundary value problems are considered for one dimensional wave equation. Existence of solutions Inthissection,wederiveanexpressionforsolutiontothehomogeneousCauchyproblemFile Size: KB.

In absorbing boundary condItion apphcatIOns, the domam is x, t > 0, y E R, and the one-way wave equatIOn IS applIed as a boundary condItion along X = 0 for (11) Well-posedness IS now the eXIstence of a UnIque solutIOn whose norm at t = to and along X = 0 can be estImated m terms of the.

Well-posedness of one-way wave equations and absorbing boundary conditions Lloyd N. Trefethen and Laurence Halpern.

Math. Comp. 47 (), Abstract, references and article information Full-text PDF Free Access Request permission to use this material MathSciNet review: Well-posedness of the Westervelt equation with higher order absorbing boundary conditions - ScienceDirect. JavaScript is disabled on your browser.

Please enable JavaScript to use all the features on this page. Skip to main contentSkip to article. : Barbara Kaltenbacher, Igor Shevchenko.

A technique that has proven successful is the application of absorbing boundary conditions which have been derived from approximations to a one-way wave equation (OWWE) at the bound- ary [2, 5, 7, 13, 9]. In this paper we reconsider this approach and show that the methods presented. A one-way wave equation, also known as a paraxial or parabolic wave equation, is a differential equation that permits wave propagation in certain directions only.

Such equations are used regularly in underwater acoustics, in geophysics, and as energy-absorbing numerical boundary conditions. The design of a one-way wave equation is connected. High-order Absorbing Boundary Conditions (ABCs), applied on a rectangular artificial computational boundary that truncates an unbounded domain, are constructed for a general two-dimensional linear scalar time-dependent wave equation which represents acoustic wave propagation in anisotropic and subsonically convective media.

Previously published absorbing boundary conditions will be shown to reduce to special cases of this absorbing boundary condition. The well-posedness of the initial boundary value problem of the absorbing boundary condition, coupled to the interior Schrödinger equation, will also be by: A one‐way wave equation, also known as a paraxial or parabolic wave equation, is a differential equation that permits wave propagation in certain directions only.

Such equations are used regularly in underwater acoustics, in geophysics, and as energy‐absorbing numerical boundary by: The Higdon sequence of Absorbing Boundary Conditions (ABCs) for the linear wave equation is considered. Building on a previous work of Ha-Duong and Joly, which related to other forms of boundary conditions, the Higdon ABCs are proved to be energy-stable (on the continuous level) up to any : BaffetDaniel, GivoliDan.

Traditional boundary conditions describe the interaction of the isolated system we are modeling with the rest of the physical world. [For example, there may be perfect insulation at the ends of a conducting bar if we are solving the heat equation; see Churchill () for a discussion.] For meteorological limited-area modeling, however, there is no physical by:.

Those rational functions r for which the corresponding one-way wave equation is well-posed are characterized both as a partial differential equation and as an absorbing boundary condition for the Author: Jeremie Szeftel.Trefethen L.

N., Halpern N. Well-posedness of one-way wave equations and absorbing boundary conditions. Math. Comp., v,pp. – Google ScholarCited by: 3.() Well-posedness of the Westervelt equation with higher order absorbing boundary conditions.

Journal of Mathematical Analysis and Applications() Mathematical analysis of Ziolkowski’s PML model with application for wave propagation in by: